Indian Statistical Institute, Bangalore

B. Math. First Year First Semester

Analysis -I

Back Paper Examination Maximum marks: 100

Date: 01-01-2018 Time: 3 hours Instructor: B V Rajarama Bhat

- (1) Show that every bounded sequence of real numbers has a convergent subsequence. [15]
- (2) Obtain lim sup and lim inf for following real sequences:

 - (a) $\{a_n\}_{n\geq 1}$ where $a_n = \frac{6-2n+n^2}{8-2n^2}$; (b) $\{b_n\}_{n\geq 1}$ where $b_n = 0$ for n odd and $b_n = 2 \frac{100}{n^2}$ for n even; (c) $\{c_n\}_{n\geq 1}$ where $c_n = a_n + b_n$ for $n \geq 1$, where a_n, b_n are as above.

[15]

- (3) Suppose $\{c_n\}_{n\geq 1}$ is a sequence of strictly positive real numbers converging to a strictly positive real number c. Show that the sequences $\{\frac{1}{k}(c_1+c_2+$ $\cdots + c_k$) $_{k\geq 1}$ and $\{(c_1c_2\cdots c_k)^{\frac{1}{k}}\}_{k\geq 1}$ converge to c. [15]
- (4) Suppose $u: [0,1] \to \mathbb{R}$ is a continuous function. Define a new function $v:[0,1]\to\mathbb{R}$ by

$$v(x) = \begin{cases} x & \text{if } u(x) \ge x; \\ u(x) & \text{if } u(x) \le x. \end{cases}$$

Show that v is continuous.

[15]

[15]

- (5) Suppose $f, g: [a, b] \to \mathbb{R}$ are differentiable at $c \in (a, b)$ and $g(x) \neq 0$ for every x. Show that $h := \frac{f}{q}$ is differentiable at c, and obtain a formula for h'(c). [15]
- (6) Let $f: [0,1] \to \mathbb{R}$ be a differentiable function. Suppose f(0) = 0 and $f'(x) \ge f(x)$ for all $x \in [0,1]$. Show that $f(x) \ge 0$ for all x. (Hint: Consider g defined by $g(x) = e^{-x} f(x)$. [15]
- (7) State and prove Taylor's theorem.